NEXTHEVEL MATH COREQUSITES DISTANCELEARNING \& HYBRIDS

Carolynn Reed, Department Chair Colleen Hosking, Associate Professor

ACC PROFILE

- Multi-campus, single college district with 11 campuses
- 7,000-square-mile service area
- Enroll 70,000+ students annually (credit/CE/AE)
- ~80\% Part-Time, 20\% Full-Time
- Developmental and College-level math courses taken concurrently
- Students are given just-in-time instruction on the prerequisite math that is needed in college-level course

NON-STEM FLOWGHART

NON-STEM PATH

ONEANDDONE*
 Statistics with
 Support

NCBM 0142
Support for Elementary Statistics

Paired with

MATH 1342 Elementary Statistics

ONE AND DONE*
Contemporary Math with
Support

NCBM 0185
Support for
College Math

Paired with

MATH 1332
Contemporary
Mathematics

STEM FLOWCHART

austincc.edu

- Higher preparation:

One level below gateway course

TWO LEVELS
 Of STUDENT
 PREPARATION

- Lower preparation:

Two (STEM) or more (non-STEM) levels below gateway course

- Developmental content fully integrated into gateway curriculum
- Non-STEM 6 credit hours (3 hour support + 3 hour gateway course)
- STEM 7 credit hours (4 support + 3 gateway)
- Two instructors co-teaching
- Collaborative \& Active Learning
- Full integration of prerequisite material
>Backwards map college-level topic
$>$ Start where they start
$>$ Careful scaffolding

NON-STEM LEARNING AGTIVITY

Distributions: Shape \& Center

Start where they start

Students are introduced to the concept of histograms

2.2 (Part 1): Introduction to Histograms

Reading Histograms

A histogram is a graph that organizes quantitative data, like counts and measurements, so we can see the distribution of these data values (i.e. how they vary). The horizontal axis shows the range of values we might vertical axis shows the frequency, or how many times those values appear in our data set. graphs in statistics rarely include "break lines" when the graphs do not start at 0 . Likewise, :ometimes offset, i.e. moved over, to help us better read the graph.)
< Easy, relatable context

Careful Scaffolding

Concept of shape is built step-by-step

The Shape of the Distribution
First, let's consider the general shape of the graph - is it symmetric or skewed? The following is called a symmetric distribution or a bell-shaped distribution.

The next graph is described as "skewed."

5. We use the terms "skewed right" or "skewed left" to describe graphs. The graph above is skewed right. How do you think you could define skewed right?

Describe each of the following graphs as symmetric, skewed right or skewed left.

Opportunities for Discussion

Students work together in groups while instructors circulate

austincc.edu

Your turn!

Discuss Problems 12 \& 13
on bin size (width of the bar) in groups of 2-3

Qualitative Data:

HYBRID:
 LOW PREP COREQS

Students and

 instructors felt the 3-hour class period was too long to focus
HYBRID FORMAT: THE EASY PART

Scheduling:

- Keep 3 LEH College-Level
- Hybrid 3 LEH Developmental
$>40 \%$ Outside of class $=35$ minutes
$>$ Total time in class now ~ 2.5 hours

What learning is shifted outside of class???

Your turn!

Consider the entire 10-page lesson. What pieces would your group move to at-home learning?

2.2 (Part 1): Introduction to Histograms

Reading Histograms

Scaffolded enough to

A histogram is a graph that organizes distribution of these data values (i.e. see in the data. The vertical axis shou (Note: The axes on graphs in statistics the location of 0 is sometimes offset,

Histograms and Dotplots in Statkey

Open Statkey. Under Descriptive Statistics and Graphs data set Traffic flow (Timed) from the list of pre-loade

Time to explore individually, also carefully scaffolded

Concept connection with more scaffolding to help summarize concept

Section 2.2. First, label the graphs as symmetric, skewed left or skewed right. Then, estimate
Descriptive Statistics and Graphs
One Quantitative Variable
One Categorical Variable
One Quantitative and One Catego Variable
Two Categorical Variable
Two Quantitative Variables
the location and label the mean on each distribution. The median has been labeled in each of the following distributions.

- If the shape of the distribution is symmetric, the mean is \qquad than the median.
- If the shape of the distribution is skewed left, the mean is \qquad than the median.
higher/lower/the same as
- If the shape of the distribution is skewed right, the mean is \qquad than

$$
\overline{\text { higher/lower/the same as }}
$$ the median.

Hybrids may not be the way to go for us...

- Less collaboration time
- Less face-time with instructors
- New ideas for keeping non-Hybrid:
$>$ Can still shift work outside of class
$>$ Last ~ 30 minutes is not brand-new material
$>$ Implement a 10-minute break

Quantitative Data:

Student DL success rate consistently abysmal for lowerprepared students in stand-alone dev. math

- Developmental content fully aligned with gateway curriculum
- Non-STEM 4 credit hours (1 hour support + 3 hour gateway course)
- STEM 5-6 credit hours (2 support + 3-4 gateway)
- Separate sections, single cohort

NON-STAM FLOWCHART

NON-STEM PATH

austincc.edu

STEM FLOWCHART

جhin ESSENTIAL ELEMENTS

- Just-in-time prerequisite support
- Student success strategies
- Collaborative learning

Discussion Boards

Student success:

Opportunities to connect and share strategies with others

Test Anxiety Strategies

When students are about to take a math test, it is not uncommon to feel anxiety. Here are some techniques to help if you feel anxious right before or during an exam:

1. Deep breathing - breathe in deeply through your nose, then exhale slowly for a longer time than your inhale. Repeat a few times. This calms down your body which can translate to calming down your mind.
2. Tense and relax - Put your feet flat on the floor and hold the seat of your chair. Tense your body for a count of 5, then relax. Repeat a few times This also helps calm down your body which can translate to calming down your mind.
3. Positive Self-Talk - If you tell yourself you won't do well, there is one kind of reaction in your brain. If you tell yourself you have prepared, you are capable, and you can do this - there is a different kind of reaction.
[^0]OR

Discussion Boards

Percentages in the News - Week 4

Find an example of a percentage quoted in a news article. Include the sentence with the quote in your post. Include the link.

Opportunities for practice

Describe the use of the percentage (as a fraction, to describe change, or for comparison), and explain its context. Be sure to comment on someone else's post in addition to posting your own example.

Discussion Boards

Discuss: What is different?

1. You are asked to find an equation of a line and are given the slope and a point on the line instead of the slope and y-intercept. What would you do differently?
2. You are asked to find a linear function, instead of an equation of a line. What would you do differently?
3. You are asked to find an equation of a line perpendicular to a given line instead of parallel to a given line. What would you do differently?

Build

conceptual understanding
by working
together
4. You are asked to find an equation of the line passing through two given points, instead of being given a slope and a point. What would you do differently?

Notebook assignments

Prerequisite review

Notebook: Unit 1 Week 2

2A: Unit Conversion (Preview)

1. Units describe what is being measured or counted.
(a) What units could you use if you were describing the distance from Austin to San Antonio? \qquad
(b) What units could you use if you are buying a house and you want to know how large it is? \qquad -
2. We can describe units using words OR using an abbreviated form.

Example: When you are driving a car, your speed is read as miles per hour and written as $\quad \mathrm{mi} / \mathrm{hr}$ Words
(a) Based on the example, what math operation does the word "per" mean? \qquad -
(b) Suppose you are buying some fabric. To calculate the unit price, you divide the price (in dollars) by the area (in square yards). The units are written: $\$ / y d^{2}$. Write the units using words: \qquad
Note: "square" corresponds to a 2 exponent on the units. What exponent will you use for "cubic"? \qquad

Notebook assignments

9. Preparing for Exam 1 - Make this plan no later than Tuesday, 9/10, so you can be sure to fit in all your assignments while still leaving yourself plenty of time to study and get help before the exam.
Include the following on your calendar (can be on more than one date and is just a tentative plan):

- When you will work on Sections 2.2, 2.3, and 2.4 - including Online HW
- When you will work on Quiz 1C

Supporting

 Student Success- When you will work on the Exam 1 Review (plan at least 2-3 different days)
- When you will get help on the review if needed (can be posting on the boards or tutoring online/in-person)
- When you plan to take Exam 1
- A backup Exam 1 day in case something happens on the day you were planning

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
$9 / 8$	$9 / 9$	$9 / 10$	$9 / 11$	$9 / 12$	$9 / 13$	$9 / 14$

austincc.edu

Notebook assignments

4. Since 1650, the average annual growth rate for world population was around 0.7%. However, the rate has varied significantly over the years. For example, it peaked at about 2.1% during the 1960s and was 1.1% in 2013.

Find the approximate doubling time for each these growth rates. Recall the doubling time formula: $T_{\text {double }} \approx \frac{70}{P}$, where p is the percent in percent form.
a. Doubling Time for 0.7% rate: $\frac{70}{P}=\frac{70}{0.7}=$ \qquad years
b. Doubling Time for 1.1% rate: \qquad
c. Doubling Time for 2.1% rate: \qquad

Additional practice on isolated skills

Notebook assignments

Variable(s)	Graphical displays	Parameters and statistics	Example
One categorical			
One quantitative			
Two categorical			
One quantitative			
and one categorical			
Two quantitative			

Austin

Scaffolding concept connections

FIRST SEMESTAR DATA

Course	DL College-level course success rate (A, B, C)	Success rate for all sections of course (classroom and DL)
Contemporary Math Corequisite NCBM 0185/MATH 1332	63%	70%
Elementary Statistics Corequisite NCBM 0142/MATH 1342	$n=27$	$n=780$
College Algebra Corequisite NCBM 0214/MATH 1314	$n=54$	56%

cneroda@austincc.edu

Whank you!

Carolynn Reed

 7 Mathematics 7 Mathematicscreed@austincc.edu

Colleen Hosking Associate Professor of Mathematics

[^0]: What is a strategy you have successfully used to help with text anxiety?

